

Whitepaper

Architecture, requirements
and use cases of the Number

Verification Open Gateway
API

Telefónica Open Gateway

22 October 2023 v0.1

Índice

 Introducción .. 3

1.1 Document Objective ... 3

1.2 Background and Context of Digital User Authentication 3
1.2.1 Digital identity and authentication ... 3
1.2.2 Multi-Factor Authentication ... 4
1.2.3 Seamless and transparent authentication using network connection. 6

1.3 How does the Number Verification API help to facilitate authentication? 8

1.4 Number Verification API in CAMARA ... 10

 Overview of the Number Verification CAMARA API ... 10

2.1 Definition of the Number Verification CAMARA API .. 10

2.2 Advantages and benefits of using Number Verification API 11

2.3 Use Cases .. 12
2.3.1 Secured transactions... 12
2.3.2 Fast login experience .. 13

 Architecture and Components .. 14

3.1 High-Level Architecture .. 14

3.2 How to use the API: workflow and implementation .. 18

 Technical Requirements and Considerations ... 21

4.1 Privacy Management and Access Tokens ... 21

4.2 Channel partners .. 22

4.3 Subscriber authentication ... 22

 API Documentation ... 24

 Conclusions ... 24

 Other relevant information... 25

 References and Additional Resources ... 25

8.1 Additional information about Telefónica Open Gateway Initiative 25

8.2 Additional information of the Number Verification CAMARA API 25

8.3 Glossary of Terms .. 26

 Annex - Detailed Flows .. 29

 Introducción

1.1 Document Objective

The objective of this whitepaper is to provide a comprehensive understanding of the

CAMARA Number Verification API, highlighting its capability to provide strong mobile-

based user’s authentication, enhanced security, and superior customer experience. It

aims to cater to a technical audience, including developers, engineers, and integration

specialists, who are seeking to use the API within their systems.

By delving into the intricacies of the CAMARA Number Verification API, this whitepaper

aims to:

• Clearly articulate the purpose and functionality of the API.

• Provide technical insights and guidance on integrating and leveraging the API

effectively.

• Showcase the advantages and benefits of adopting the CAMARA Number

Verification API for aggregators and service providers.

• Highlight best practices, recommendations, and real-world case studies to

illustrate successful API implementations.

Through this document, readers will gain a solid understanding of the API's

architecture, components, integration requirements, security considerations, and the

overall workflow involved in leveraging Number Verification capabilities. It aims to

empower technical professionals with the knowledge and tools necessary to integrate

the CAMARA Number Verification API seamlessly into their systems, facilitating the

authentication of their users in a secure and agile way.

1.2 Background and Context of Digital User Authentication

1.2.1 Digital identity and authentication

The electronic or digital representation of an individual or organization is referred to as

their "digital identity". It is a group of digitally saved identifying characteristics that

collectively and specifically identify a person or legal organization and are exchanged

during electronic transactions. These characteristics can be physically or electronically

recorded, and they are digitally saved.

Opposite to a physical ID (e.g.: a passport), a digital ID can serve to authenticate an

individual remotely over digital channels. It can track his/her activities and collect

information, such as personal data, behavior, and interactions, but it can also be

employed when identifying the individuals when accessing certain services. The parties

(services, application providers, or other users) participating in the transaction need to

trust each other in the context of digital identities and electronic transactions.

Authenticity and dependability as the basis for trust.

Figure 1. Four examples of common activities that require digital IDs:

Online shopping / Customer ID

Secure online transactions require proper customer identification. While a customer ID

provides increased security for the user, it also helps providers manage data, such as

tracking customers' transactions, preferences, or demographic information.

Additionally, by detecting patterns, they can improve customer service, personalize

marketing campaigns, and even prevent fraud.

E-banking ID

Security is even more relevant in these use cases. The e-banking ID for a user to

access digital bank services usually consists of a username/password, contract

number, and other digital factors. Customers can view their bank account information

and perform transactions, such as paying bills or trading securities, once logged in.

Citizen ID

Authorities provide citizens with secure access to their online tools and tasks 24/7,

enhancing public service and customer interaction. Citizens can, for example, order

official documents online, avoiding time-consuming office visits. Furthermore, every

taxpayer finds a personal identification number on the tax return they must complete,

allowing them to submit the documents electronically.

Mobile Phone Number ID

In mobile communication, the phone number (or MSISDN) is employed to identify each

user’s line. It allows the user to communicate with other parties using a familiar and

convenient format that internationally identifies its phone connection when calling or

accessing other mobile services. Nowadays, mobile devices are the primary way in

which people access online services and even make and receive payments.

1.2.2 Multi-Factor Authentication

To use any kind of digital services, users must authenticate themselves on the

provider’s website/app with their credentials. An authentication factor is a category of

evidence that a person must present to prove they are who they say they are, like a

user and password in an email account, a national or citizen ID for legal services or the

phone number in a phone call. The three (main) authentication factors are:

Knowledge Factor → something you know, e.g., username and password.

Possession Factor → something you physically have, e.g., mobile phone.

Inherence Factor → something you are, e.g., fingerprint.

Individual authentication factors on their own may present security vulnerabilities,

sometimes due to user behavior patterns and habits and other times, because of the

limitations of technology. Today, many organizations use multiple authentication factors

to control access to secure data systems and applications. Passwords and pin

numbers must be memorized by users when using a knowledge-based authentication

factor. As a result, users may create unnecessarily simple passwords and update them

very rarely, making them easy to guess or steal.

Figure 2. Authentication methods according to their nature

Biometric and possession-based authentication factors may be the strongest means of

securing a network or application against unauthorized access. Combining these

methods into a multi-factor authentication process decreases the likelihood that a

hacker could gain unauthorized access to the secured network. For instance, a banking

application may employ a multi-factor authentication joining the security of a PIN code

(knowledge), validation of smartphone by the mobile number (possession) and face

recognition (inherence), for the login of customers and the validation of transactions.

For enhanced security, the joint use of 2 factors of authentication or 2FA for short,

knowledge and possession is a highly recommended option. The combination of the

possession factor (a mobile phone) and biometric signature (e.g fingerprint) is also

becoming very popular.

1.2.3 Seamless and transparent authentication using network connection.

Smartphones are extensively used by users to access digital services. The cell phone

is the most used device for managing a wide range of products and services, from food

delivery to gym memberships to vehicle insurance and even bank accounts. As a

result, utilizing an authentication system that incorporates the smartphone itself

(possession factor) is considered as the most convenient.

Nowadays, digital customers are used to employ multi-factor authentication

mechanisms that involve using their smartphone as a proof of possession. Code

generators are an option that allows to validate that the customer is using the same

device in each of the interaction, but they do not validate the possession and usage of

the phone number. SMS One-time Passwords (OTPs) are the most used possession

authentication factor, because of their simplicity and re-usage of the widespread

existing SMS delivery systems.

SMS OTPs are based on the premise that a user owning a phone will be able to read a

received SMS sent to their phone number, and will be able to manually introduce it in a

designated application field. When registering in a new application (or getting logged or

validating a transaction) users are required to use SMS OTP for:

• Validating that the phone number they registered with is the one they own (and
they are currently using) à Number Verification process.

• Validating that they are in possession of the same phone number as they
registered à Possession factor.

For that purpose, users introduce their phone number during the registration process,

and wait for the receival of the security code as part of an SMS content.

After receiving the SMS, users can read the code, temporally memorize it, and

manually introduce the code in the application, so they can validate the process.

Figure 3. User authentication flow with SMS OTP method.

Multiple steps are required by a user to register or validate a digital transaction that

requires mobile possession factor authentication by SMS OTP, what leads in several

issues related to user experience, or even security as the text message with the

authorization code is not encrypted. This method is also vulnerable to scams like SIM

Swapping. In an era where cyberthreats and the risk of data breaches are on the rise,

strengthening security measures is critical. Many people believe that the more steps

individuals take during identity verification, the safer both consumers and organizations

become in today's digital environment. This notion, however, does not imply that

authentication must be difficult or time-consuming for customers. In fact, providing

unneeded friction in the early phases of the user journey can lead to a poor customer

experience, potentially leading to customers abandoning sign-ups or purchases

entirely.

Apart from the non-transparent user experience, SMS was not architected initially to

act as a possession factor, and the National Institute of Standards and Technology

(NIST) states that “due to the risk that SMS may be intercepted or redirected,”

businesses should consider alternative authentication methods.

Because of this, new solutions are now available that leverage carrier network-based

technology to provide strong authentication. When consumers turn on their phones, the

device and SIM are automatically connected to the carrier and authenticated. They

don't have to do anything as a user. Today, carrier network-based user authentication

is the most secure and frictionless approach, which makes use of mobile network

capabilities to enable strong authentication with higher security and better user

experiences compared to other methods.

https://pages.nist.gov/800-63-3/sp800-63b.html

1.3 How does the Number Verification API help to facilitate

authentication?

The Number Verification API leverages the internal telco mechanisms to transparently

authenticate users based on their connection of their devices to the network.

In comparison with current available solutions for user authentication, the validation of

number based on network mechanisms are easier to use by customers and provide

more security, since no manual interaction is required, and no plain-text codes are

employed.

Figure 4. Authentication flow experience with mobile network-based number

verification.

The Number Verification service verifies that the provided mobile phone number

(MSISDN) is the one paired with the device from which the data communication is

happening. Thus, it verifies that the user is interacting with a digital service from a

device with the same mobile phone number as it is declared.

Operators employ different techniques or mechanisms to identify the ownership and

identity of the user’s connection, so the subscription and, therefore, the phone number

can be securely and univocally identified. It’s clear that the mechanism will be valid in

those scenarios where the user’s device is connected to the mobile network, so SDKs

or applications may employ mechanisms to validate and ensure the connection so that

the network identification can be performed. Wi-Fi (and tethering) or VPNs may not allow

the Number Verification service to properly authenticate the user’s connection, since the

service employs the mobile network connection to validate the user with enhanced

security. Application SDK will need to ensure that the device is using a mobile

connection.

Main features of the Number Verification API are:

• Superior user experience, frictionless to the user:

Once the user submits the phone number to the app, the verification is entirely

invisible. They do not have to go to an authenticator app, there are no PINs to

mistype, no URLs to click on, and no actions to review and approve.

Automatic fill-in tools are getting introduced in the applications for the received

codes, but that requires allowing applications to read all the received SMSs of the

user.

• Faster authentication mechanism:

Number Verification allows the authentication to be performed automatically,

instead of waiting for an SMS to be received or opening other authentication

applications manually.

• Improved transaction conversion:

Facilitating the user experience, transactions and registration conversions rates are

improved, reducing the sign-up abandonment.

• No phishing attacks for account takeovers:

The user cannot be socially engineered as there is no information to be phished nor

manual process to be performed by the user. More secure than SMS OTP, which

can be vulnerable to hijacking and man-in-the-middle attacks like SIM Swapping.

• Unified integration via APIs:

Easy integration with existing applications due to the use of standard authentication

mechanism (e.g., OAuth2 Authorization Code grant*) and simple APIs.

*https://www.rfc-editor.org/rfc/rfc6749#section-4.1

• Open to advanced protection:

Ready to create stronger services with additional Open Gateway APIS:

o SIM SWAP: Ensures that the user line has not been compromised.
o Device Location Verification: Adds additional risk scoring information

by validating users’ transactions based on their location, e.g., validating
if they are in the ATM where a transaction is being executed.

• Improved privacy:

This method does not leave any traces in the phone (like SMS that remain

archived).

https://www.rfc-editor.org/rfc/rfc6749#section-4.1

1.4 Number Verification API in CAMARA

The GSMA Open Gateway initiative, led by the GSMA (Global System for Mobile

Communications Association), aims to drive collaboration and interoperability among

telcos, aggregators, and service providers in the mobile ecosystem. It provides a

platform for industry stakeholders to develop and deploy innovative mobile services,

including digital identity solutions.

By participating in the GSMA Open Gateway initiative, telcos and aggregators can

leverage the collective expertise and resources of the mobile industry to accelerate the

adoption of digital services in different business scopes.

Figure 1: Logo for the CAMARA Project within Linux Foundation.

Network authentication mechanisms are available in the industry for years, but difficult

integrations and market fragmentation have prevented them to fully succeed. Now, the

Number Verification API itself is standardized in the CAMARA Telco Global API

Alliance, facilitated by the GSMA. The CAMARA standardization of this API brings

together telcos and service providers from around the world to establish best practices,

share knowledge, and promote industry-wide cooperation. As a result, in the scope of

the Open Gateway initiative, this API can be integrated by any kind of company in the

digital services industry around the world in an easy, fast, and seamless way.

 Overview of the Number Verification CAMARA API

2.1 Definition of the Number Verification CAMARA API

The CAMARA API validate the user identity by confirming the ownership of the phone

number which they are registering, by matching it with the number that operator

identifies from the user’s device connection.validate the user identity by confirming the

ownership of the phone number which they are registering, by matching it with the

number that operator identifies from the user’s device connection.

The API specifies the following two operations:

• POST verify: answers the question ‘does the introduced phone number match

the one that the user is currently using?’. This operation just needs the phone

https://www.gsma.com/futurenetworks/ip_services/understanding-5g/camara-telco-global-api-alliance
https://github.com/camaraproject/NumberVerification

number to be checked (parameter ‘phoneNumber’) and is the preferred option

for user authentication.

• GET device-phone-number: answers the question ‘which phone number match the

is user is currently using?’ This operation doesn’t require any input and returns

as answer the phone number identified as the one the user is currently using.

The Number Verification CAMARA API enables developers to directly integrate the

authentication mechanism into their application, with a seamless experience to their

customers. Also, this API can be combined with other Open Gateway APIs related to

the anti-fraud scope that may complement the experience and increase the security.

The inclusion of channel partners and service aggregators in the integration chain

facilitates the integration of telco functionalities with other mechanisms like security

algorithms or additional security measures or external data sources, for instance

including back-up authentication mechanisms in case the network authentication is not

available or enhancing the service with additional Open Gateway APIs such us Device

Location Verification or SIM SWAP.

2.2 Advantages and benefits of using Number Verification API

The CAMARA Number Verification API offers numerous advantages and benefits for

the industry interested in enforcing identity protection. Here are some key arguments

highlighting the advantages of using the CAMARA API:

1. Secure authentication and identity validation: Based on network

mechanisms instead of less secure Over the Top mechanisms, and simplest

than hardware tokens. Works on any internet enabled mobile device connected

to carrier mobile data network, even when roaming (and even in Wi-Fi, if a

temporal network transition is allowed).

2. Improved user experience: No need to copy and paste or remember one-time

passwords sent via SMS, improving the experience and security of the

validation processes.

3. Anti-fraud suite: Number Verification is just one of the Open Gateway APIs

related to the protection of the customers identity in the scope of mobile digital

services. Other APIs can be used to enforce this protection in different

circumstances and use cases. For example, the APIs SIM SWAP, Device

Location Verification, and Know Your Customer - Match, among others.

4. Usability: The CAMARA APIs are designed to be developer-friendly and easy

to set up and use. It simplifies the integration process for telcos and any kind of

clients, allowing them to offer Number Verification as an option to authenticate

the users.

5. Footprint: The CAMARA standardization of Number Verification guarantees a

common accesso to the functionality across Telco operators and countries.

6. Security: The CAMARA guidelines guarantees a common privacy and security

framework that tackles the needs of the service providers while preserving the

rights of the customers and.

2.3 Use Cases

In this section, we will explore two targeted use cases for the Number Verification

CAMARA API, highlighting its relevance and benefits in the following domains: Media,

Entertainment & XR, Financial Services & Insurances and E-Commerce & Retail.

2.3.1 Secured transactions

Secure applications require the validation of the identity of the users when managing

different activities, like registration, password recovery or confirming transactions.

SMS OTP is widely used to prove that the user is in possession of the mobile device

associated with the mobile number that identifies the user. Instead, the application can

request a seamless authentication of the mobile device via the Number Verification

API, proving ownership of the phone number and providing the application with

confirmation that the user owns the device and phone number, needed to validate a

banking transaction (e.g., money transference) or initiate a password recovery process.

Password recovery often requires complex processes, which include remembering

certain personal data or accessing other apps, like email, which can be hard to

complete for certain people like seniors. By employing the network as the identity to

start the password recovery, developers ensure that users can easily access again to

their services.

Number Verification allows to secure the transactions while improving the user

experience and ensuring the transaction conversion rates. Other APIs can further

enhance security, such as SIM SWAP.

Figure 2: Number Verification API secures the banking transactions

Developer needs:

• Secure validation of the user identity, concretely the ownership of the registered

phone number.

• Build sophisticated algorithms to evaluate fraud risks in different circumstances.

• Higher conversion rate in transactions and more secure validation of critical

processes

2.3.2 Fast login experience

Online services such as social media applications require multi-factor authentication

mechanisms for users to log in.

The login process in certain mobile applications requires a manual process where the

users have to prove that they are in possession of the device that they have registered

with the application (Level of Authentication/Assurance 2 or LOA2). SMS-OTP is the

most used method, allowing the application to validate that the user is using the

registered mobile phone when logging in (possession factor). Number Verification

makes it possible to simplify and speed up the login procedures without manual

interactions from the user (e.g., copy-paste of code).

Using Number Verification API combined with additional Open Gateway services can

improve the level of security of the applications, integrating the complete anti-fraud

suite of APIs from CAMARA.

Figure 3: Number Verification API helps users to log in to application.

Developer needs:

• Frictionless login process and optimized and transparent user experience
without manual processes.

• Optimized and transparent user experience without manual processes with

higher onboarding conversion rate.

• Secure application access with additional authentication factors.

 Architecture and Components

3.1 High-Level Architecture

The following figures describe the high-level architecture of the three scenarios where

Number Verification CAMARA API can be used.

The first figure represents the scenario where a Service Provider uses the Number

Verification API through a Channel Partner e.g., from the marketplace of a Hyperscaler

(e.g., Microsoft Azure, AWS, Vonage, Google Cloud). The Service Provider or

developer uses a SDK provided by the channel partner to implement the integration

with the API. In this way, the Service Provider can directly use the Number Verification

API. In fact, they could also use any other available APIs (whether they are related to

the anti-fraud suite or not).

Figure 4: Number Verification API used from a Channel Partner

The second figure represents the scenario where a Service Provider uses the Number

Verification API from the service provided by an Aggregator. The Aggregator could

build a sophisticated identity service by combining multiple APIs from Open Gateway,

other external APIs, implementing their own in-house products, etc.

Figure 5: Number Verification API used from the service of a Channel Partner

The third figure represents the scenario where a Service Provider uses the Number

Verification API directly from Open Gateway. It can be either integrating with operators

or using a kind of gateway to them.

Figure 6: Number Verification API used directly integrating with Telco operators.

• Service provider: also known as developers, company whose application takes

advantage of the features of Number Verification API to authenticate their

customers. When using the Number Verification API from a Hyperscaler, the

service provider shall implement the request to the API by using the SDK provided

by the Hyperscaler in the marketplace. When using the Number Verification API

from an Aggregator, the digital service provider must implement the request to the

API or SDK exposed by the Aggregator, that could give added value to the service

provider.

• Hyperscaler: they are usually cloud players that provide marketplaces where APIs

and other services can be contracted by clients that are used to consume cloud

products. In this case, they reach agreements with MNOs in the Open Gateway

context to publish their APIs and then they set prices and conditions to the

consumption of their products by the digital service providers.

• Aggregator/Integrator: the role is similar to the hyperscalers’ one, but they can

aggregate other services to provide digital service providers with more

sophisticated products and personalized experiences.

• Open Gateway Operator platform: the hyperscalers and aggregators set up

integrations with the MNOs in the Open Gateway context.

3.2 How to use the API: workflow and implementation

The most relevant interaction of this API is the user’s connection authentication. With

this process (detailed in Subscriber authentication), the Operator is capable of

authenticating the users (network subscribers) based on their connection and provide a

valid access token which identifies them.

Number Verification API allows two different operations, although the main usage is

focused on the verification endpoint.

The operation ‘verify” confirms whether the introduced MSISDN is the same as the

one identified in the authentication process by the access token, returning true in case

of match, and false in case any trouble or miss-authentication is detected.

Request example: (POST)

{
 “phoneNumber”: “34612345678”
}

Response example:

{
"devicePhoneNumberVerified": true

}

The operation (get) ‘devicePhoneNumber’ directly returns the phone number of the

user, as identified in the access token.

Request example: (GET)

Response example:

{
"devicePhoneNumber": "+34612345678"

}

Apart from the explicit definition of the API REST requests, when the API is used from

the marketplace of a Hyperscaler, an SDK will be provided to make the corresponding

requests. The objective of such SDK is to make it easy to integrate the API call into the

software of the developer. The following is just an indicative example of how the

Number Verification ‘verify’ operation could work using Python:

from Example.OpenGatewaySDK import NumberVerification

Users Authentication and access token request
NumberVerification.Authorize()

One-line Open Gateway query (returns true or false)
verified = NumberVerification.verify(phoneNumber)

 Technical Requirements and Considerations

This chapter provides a comprehensive overview of the integration flows needed for

seamless integration with the Open Gateway Operator platform (API Gateway).

4.1 Privacy Management and Access Tokens

Several Open Gateway API enable developers or applications the access and usage of

personal information or data. “Using” personal data refers to any manipulation (in

any way) of the any information which are related to an identified or identifiable

natural person, even just reading it. The usage of personal data, therefore, requires to

be legitimized.

For controlling the access to personal data, consuming an Open Gateway API

requires the usage of an access token. This mechanism validates the secure access

of the consuming application to the data exposed by the API and identifies the exact

data that is being accessed.

The access token allows to track the data consumption, ensure the proper privacy

management (e.g., validating if the customer has rights to access) and gives the

possibility to directly provide subscribers control over the access to their data,

enabling consent capture/revoking mechanisms.

For that reason, the developer/application shall first request a valid access token that

identifies:

• Data (what) that is going to be accessed.

• Purpose (for what), reason why the data is going to be accessed.

• 3-legged identification of the parties interacting:
o Data consumer: Application
o Data provider: Operator
o Data owner/origin: Network Subscriber

Legitimizing the access to personal data can imply multiple procedures, that shall be

validated by the operator during the access token retrieval. In case that the lawful basis

to consume the API is explicit Consent, the capture procedure of such consent may be

launched during the token creation, ensuring that the subscriber/user is identified and

can clearly confirm or reject the access to the data. Legitimate interest could also apply

to this API, but this decision is to be taken by the telco according to its legal/privacy

assessment.

Number Verification API is usually employed for antifraud purposes, so legitimate

interest is quite often applied as the lawful basis to consume the API. A legitimate

interest lawful basis does not require explicit consent, but the subscriber is informed

about the access and can revoke it in any moment. It is the duty of each telco to

implement the channels and procedures to manage lawful management by its

subscribers.

4.2 Channel partners

As previously introduced, Open Gateway enables the integration of Channel Partners

(aka aggregators) that facilitate the integration of APIs and improves the experience of

developers and the functionalities of the products. Channel Partners can include

service aggregators, hyperscalers or any other partner which will collaborate in the

commercialization of the Open Gateway services.

Channel partners oversee aggregating:

• Aggregate developers and applications: Channel partners facilitate the reach
to developers and applications and creates homogeneous and unique
integration towards operator. Multiple applications accessing one operator.

• Aggregate subscribers and operators: Channel partners facilitates the
integration of applications to multiple operators, ensuring that a regional
coverage can be easily achieved for applications. Developer only needs to
integrate once to reach multiple operators, without knowing which operator
manages each of the subscribers whose data is being accessed. One
application accessing multiple operators.

Channel partners may also provide a developer friendly interface for the access of

APIs, for instance by an integrated SDK that enables the access to Open Gateway

(both consume APIs but also access control or access token management). Channel

partner may also enable the usage of multiple APIs in one single step with SDK.

4.3 Subscriber authentication

In the case of Number Verification API, the access token not only provides information

of the consumption chain to manage privacy and security, but also allows to properly

identify the subscriber whose data is being accessed. A standard front-end access

token retrieval flow (OAuth2 Authorization Code grant) is employed to ensure the

proper identification of the user’s connection/device, by identifying the connection in the

operator’s network.

In a simplified approach, the frontend access token generation is depicted in the

following diagram.

1. Application backends request the application frontend to initiate the AuthCode

OAuth2 flow.

2. Device browser redirects the request to the authorization endpoint of the

operator.

3. The request is authenticated in the operator’s auth server based on the device’s

connection. Operators may use the IP origin address or employ other network

mechanisms to authenticate the connection, such as Header Enrichment. A

lawful base is checked, and consent is captured in the device’s browser, if

necessary.

4. The authserver provides a valid AuthCode to the application as response.

5. Application frontend redirects the code to the application backend.

6. The application backend requests an access token to the authserver, providing

the code as input.

7. The authserver provides finally the API access token, so application can directly

consume the Number Verification API (or the specific required API).

The detailed sequence diagram can be found as part of the API standard definition in

CAMARA, where the standard OAuth2 Authorization Code grant is detailed for the

usage of Number Verification API.

In an Open Gateway flow where a channel partner can be involved between the

application and the operator(s), the complete flow requires additional interactions with

the channel partner (detailed in Annex - Detailed Flows). Channel partner, by providing

https://github.com/camaraproject/NumberVerification/blob/main/documentation/API_documentation/assets/uml_v0.3.jpg

an API access SDK, will simplify and hide the complete flow, so developer will not need

to consider the interactions between aggregator and operator.

 API Documentation

The Number Verification API is standardized in CAMARA, and the corresponding

documentation is in this repository at GitHub:

https://github.com/camaraproject/NumberVerification

The version of the specification explained in this document is 0.3.1, which can be found

in this link:

https://github.com/camaraproject/NumberVerification/blob/main/code/API_definitions/n

umber_verification.yaml

The operations defined in the specification have been explained in this document in the

section How to use the API: workflow. The CAMARA specification itself includes more

documentation about the objective and use of the API.

 Conclusions

Anti-fraud tools include ensuring the identity of the user who is accessing the services,

where Number Verification CAMARA API can improve security and user experience.

Reducing the risk of fraudulent access to applications like bank accounts, while

improving the conversion rate of applications with a better and transparent interaction

flow for the customers. Different use cases are considered from the registration

process when users identity is validated, to securing the login or access to applications.

Number Verification API can be used also in collaboration with other Open Gateway

services for reaching a deeper protection and user’s validation, like SIM SWAP

(prevent SIM related frauds) or Device Location Verification (location authentication

factor for ensuring data identity).

The integration of the API and the different architectures have been identified and

detailed, providing a deep introduction on the usage and integration of Number

Verification CAMARA API.

https://github.com/camaraproject/NumberVerification
https://github.com/camaraproject/NumberVerification/blob/main/code/API_definitions/number_verification.yaml
https://github.com/camaraproject/NumberVerification/blob/main/code/API_definitions/number_verification.yaml

 Other relevant information

You can join now the Telefónica Open Gateway Developer Hub to test our API,

develop use cases with the power of the network and improve user experiences.

Join Developer Hub

If you are interested in the potential of Telefónica Open Gateway and you are willing to

collaborate with us, you can access our exclusive Partner Program:

Join Partner Program

For further questions about the initiative, don’t hesitate to contact our experts:

Contact our experts

 References and Additional Resources

8.1 Additional information about Telefónica Open Gateway Initiative

Learn more about the Number Verification API and other Open Gateway APIs and

services in Telefónica in our website: https://opengateway.telefonica.com/

8.2 Additional information of the Number Verification CAMARA API

The Number Verification CAMARA API official documentation is collected in the

following GitHub Repository:

https://github.com/camaraproject/NumberVerification

https://opengateway.telefonica.com/en/developer-hub
https://opengateway.telefonica.com/en/partner-program
https://opengateway.telefonica.com/en/contactexpert
https://opengateway.telefonica.com/
https://github.com/camaraproject/NumberVerification

8.3 Glossary of Terms

TERM DEFINITION

Aggregator

Aggregator or ‘Channel Partners’ aggregate Operator’s

CAMARA standardized APIs to build Open Gateway-based

services and implement Operator end-point routing based

on final user identification on the network.

API Gateway

An intermediary platform that allows communication

between different systems and APIs, providing a centralized

and standardized approach for accessing and utilizing APIs.

The Open Gateway operator platform is the API GW

platform in the operator that exposes standardized APIs so

third-party services can consume them in a secure and

consistent way.

Operator platform APIs are based on REST/HTTP. OAuth

2.0 and OpenID Connect are standard security mechanisms

to control access to the APIs. APIs are reachable from the

Internet and all traffic is encrypted with TLS.

AuthCode
Authentication method to validate the user's identity during

the authentication process.

CAMARA

CAMARA is an open-source project within Linux Foundation

to define, develop and test the APIs. CAMARA works in

close collaboration with the GSMA Operator Platform Group

to align API requirements and publish API definitions and

APIs. Harmonization of APIs is achieved through fast and

agile created working code with developer-friendly

documentation. API definitions and reference

implementations are free to use (Apache2.0 license). The

tool to manage the work and outcomes of the APIs

standardization at CAMARA is GitHub:

https://github.com/camaraproject

Consent

The explicit permission given by the user for the processing

of their personal data, as required by privacy regulations

such as GDPR (General Data Protection Regulation).

https://www.gsma.com/futurenetworks/ip_services/understanding-5g/camara-telco-global-api-alliance/
https://github.com/camaraproject

CSP

Communication Service Provider, refereed to a

telecommunications operator that is providing a

mobile/fixed/satellite connection to a set of network

subscribers. In case of mobile network, they are usually

known as MNO or Mobile Network Operators.

IDP
Identity Provider, a service that authenticates and verifies

the identity of users.

MSISDN

Mobile Station International Subscriber Directory Number,

aka phone number, is the unique ID that identifies a device

or user in a phone call or in a data session. It’s the public ID

that CSPs globally use to identify their subscriber’s lines.

Network Subscriber

User of the operator’s network. In Open Gateway,

subscriber is the network user whose data of configuration

is being accessed or modified by the API.

Open Gateway

An industry initiative led by GSMA (Global System for

Mobile Communications Association) that transforms

telecom networks into future-ready platforms, enabling

seamless integration and access to telco capabilities

through standardized APIs. Sometimes referred as OGW.

Open Code
Repository

A platform or repository where developers can access and

collaborate on open-source code and projects, such as

GitHub.

OAuth 2.0 / OpenID
Connect

Standards and protocols for user authentication and

authorization, allowing secure access to APIs and services.

Privacy-by-Default

A principle that ensures privacy protection is integrated into

systems and processes by default, requiring explicit user

consent for the processing of personal data.

SIM Swap

This refers to the act of asking a telco operator for a new

SIM card arguing that the original one has been lost,

damaged or stolen. When the new SIM card begins to be in

force, the old one becomes invalid, and it is said that a SIM

swap has happened. This can be a legitimate action. But

this API helps to detect whether it happens due to an

illegitimate action or not.

SDK

Software Development Kit, a set of tools, libraries, and

documentation that enables developers to build applications

for a specific platform or system.

User Identifier

A unique identifier associated with a user, such as an IP

address or MSISDN, used for authentication, routing, and

identification purposes.

 Annex - Detailed Flows

Flow description:

First, the application backend instructs the application frontend in the device to initiate

the OIDC authorization code flow with the aggregator (Steps 1-22).

As per the standard authorization code flow, the device application is redirected to the

aggregator's authorization endpoint (Steps 1-2), providing a redirect_uri (app_callback)

pointing to the application backend (where the auth code will eventually be sent), as

well as the purpose for accessing the data.

The aggregator receives the request from the device application and collects the IP

from which the device application is accessing. The aggregator will first discover the

operator for the connection in the device where the application is running by querying

the telco finder (Steps 3-4).

Once the telco operator is known, the aggregator itself initiates the OIDC authorization

code flow with the operator (Steps 5-15).

As per the standard authorization code flow, the device application is redirected to the

authorize endpoint of the OGW platform (Steps 5-6), providing a redirect_uri

(aggregator_callback) pointing to the aggregator where the auth code will be sent, as

well as the purpose for accessing the data originally sent by the device application to

the aggregator.

The OGW platform receives the request from the device application and does the

following:

• Use network-based authentication mechanism to obtain the user identifier, i.e.:
MSISDN. Set the OAuth sub to the unique user ID in the operator (Step 7).

• Check if user consent is required, which depends on the lawful basis associated
with the purpose ("legitimate interest", "contract", "consent", etc.). If necessary,
it will check in the operator's consent master whether user consent has already
been given for this identifier and for the requested purpose(s) (Steps 8-9).

Then, two alternatives may occur:

Scenario 1: User consent is not required, or consent is already given (Step 10). The

OGW platform will continue the authorization code flow by redirecting to the

aggregator's redirect_uri (aggregator_callback) and including the authorization code

(OperatorCode).

Scenario 2: Consent is required and not yet provided by user (Steps 11-12)

• The operator performs the consent capture. Since the authorization code grant
involves the frontend, the consent can be captured directly from the user.

• Once the user has given consent, the authorization code flow continues by
redirecting to the aggregator's redirect_uri (aggregator_callback) and including
the authorization code (OperatorCode).

Once the aggregator receives the redirect with the authorization code (OperatorCode -

Step 13), it will retrieve the access token from the OGW operator platform

(OperatorAccessToken) (Steps 14-15).

Then the aggregator will continue the authorization code flow by redirecting to the

application's redirect_uri (app_callback) and including the authorization code

(AggregatorCode - Steps 16-17).

The application will request an access token to aggregator (Step 18). Aggregator will

create a new access token, AggregatorAccessToken (*), by creating a JWT extended

with additional claims that will carry (Step 19):

• The access token created by the operator (OperatorAccessToken).

• Routing information to know where to route later API calls using the
AggregatorAccessToken.

(*)NOTE: As mentioned above, there are other ways to implement the same concept.

For example, the aggregator could store the OperatorAccessToken (as well as the

necessary routing information) in a database and use a reference token to access it.

The AggregatorAccessToken created is encrypted so that no relevant information is

exposed.

The AggregatorAccessToken is made available to the application (Step 20). The

application will complete the OIDC flow by interacting backend with frontend (Steps 21-

23).

Now the application has a valid access token that can be used to invoke the CAMARA

API offered by the aggregator (Step 24).

The aggregator will decrypt the access token, check its validity, find the routing

information inside, and extract the OperatorAccessToken (Step 25). Then it will forward

the CAMARA API request unchanged to the operator, including the

OperatorAccessToken in the request (Step 26). Finally, the operator will validate

OperatorAccessToken, grant access to the API based on the scopes bound to the

access token, progress request to the corresponding API backend and retrieve the API

response (Step 27).

Finally, the operator will provide API response to the aggregator (Step 28) which will be

then sent to the application (Steps 29-30).

opengateway.telefonica.com

2023 © Telefónica Innovación Digital, S.L.

All rights reserved.

	1. Introducción
	1.1 Document Objective
	1.2 Background and Context of Digital User Authentication
	1.2.1 Digital identity and authentication
	1.2.2 Multi-Factor Authentication
	1.2.3 Seamless and transparent authentication using network connection.

	1.3 How does the Number Verification API help to facilitate authentication?
	1.4 Number Verification API in CAMARA

	2. Overview of the Number Verification CAMARA API
	2.1 Definition of the Number Verification CAMARA API
	2.2 Advantages and benefits of using Number Verification API
	2.3 Use Cases
	2.3.1 Secured transactions
	2.3.2 Fast login experience

	3. Architecture and Components
	3.1 High-Level Architecture
	3.2 How to use the API: workflow and implementation

	4. Technical Requirements and Considerations
	4.1 Privacy Management and Access Tokens
	4.2 Channel partners
	4.3 Subscriber authentication

	5. API Documentation
	6. Conclusions
	7. Other relevant information
	8. References and Additional Resources
	8.1 Additional information about Telefónica Open Gateway Initiative
	8.2 Additional information of the Number Verification CAMARA API
	8.3 Glossary of Terms

	9. Annex - Detailed Flows

