Robust \Wake-Up Word Detection by

® Two-stage Multi-resolution Ensembles

‘ Fernando Lopez' 2, Jordi Luque’, Carlos Segura’, Pablo GomeZz®

' Telefonica |+D, Spain

2 Universidad Autobnoma de Madrid

Introduction

Wake-up Word (WuW) in production scenarios priories robustness,
energy efficiency and minimizing communication delays. Thus,
this work proposes:

* Enhancing data with temporal alignments

« Parametric optimization of feature extraction

« Comparison of heterogeneous architectures in terms of
performance and Real Time Factor (RTF)

 Atwo phases detection scheme with multi-resolution ensembles
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Methodology

Database
* Augment “"Okey Aura” database up to ~70 hours of audio
 + M-AILABS Spanish, SLR28, Valentini-Botinhao and new
recordings
Audio processing
 CTC-based alignment of positive data
« MFCC's parametric optimization:
o Device: 13 coefficients, W=100ms, H=50ms
o Server: 40 coefficients, W=30ms, H=10ms
Models
* Thirteen heterogeneous architectures
o CNNs, RNNs, ResNets, Lambda Networks, Performers,
Conformers and Broadcasted Residual Learning
Two-stages detection scheme:
* Alightweight on-device model for real-time processing
A verification model on the server-side, which is an ensemble of
heterogeneous architectures. The strength of different
architectures is leveraged by using the stacking method
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Conclusions

Experiments and Results

* Training and evaluation with a fixed-length window: 1.5 seconds

* Audio corrupted with background noise, SNR range: [-10, 50] dB

* Training from scratch during at most 700 epochs minimizing a
Cross Entropy Loss

« Batch size of 128, and Adam optimizer with an initial Learning
Rate (LR) of 0.001

 The LR Is scheduled with on plateau reduction
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sgru architecture trained with
temporal annotations from:

* Voice Activity Detector (VAD)
 CTC-based aligner
CTC-aligned data obtains an :
average +4,175% relative 0.75 1
improvement in all SNR ranges 0.70
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Thirteen audio classifiers compared in terms of performance and RTF
on the Pixel XL
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Ensemble

We experimented combinations of the best heterogeneous

architectures using the stacking method

 The ensemble-3 is the best performing ensemble. It combines
three classifiers in the server-side with the on-device model

 The scheme allows to configure two operational points

device-sgru 0.955 =
cnn-fat2019 0.978 +2.408 %
ensemble-1 + device-sgru 0.972 +1.780 %
ensemble-2 + device-sgru 0.977 +2.304 %
+ resnet15-narrow
+ device-sgru
ensemble-3 + resnet15-narrow 0.981 +2.723 %
+ bc-resnet-1
+ device-sgru
ensemble-4 + resnetis-narrow 0.958 +0.314 %

+ bc-resnet-1
+ lambda-resnet18

Improvements in all SNR ranges thanks to use CTC-based speech-to-text alignments
Selected different feature extraction for on-device and server detection (multi-resolution)
Compared heterogeneous audio classifiers in terms of RTF and performance

We propose a robust detection scheme with two-phases. Using two models, multi-resolution and ensembles we achieve a ~25ms delay in the

first detection, an overall WuW F1-score of 0.981, and a WuW verification in ~293ms.
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